Canales y corrientes iónicas del corazón
Contenido principal del artículo
Resumen
En este artículo se revisan avances recientes sobre canales y corrientes iónicas del corazón. Los canales son complejos macromoleculares de proteínas que forman poros en la membrana celular, por los cuales pasan corrientes iónicas que se registran mediante técnicas de microárea de membrana («pach clamp»). Las proteínas de los canales consisten en la unión de cadenas polipeptídicas denominadas subunidades (o monómeros), constituidas a su vez por cuatro dominios y seis segmentos
Detalles del artículo
Sección
Cómo citar
Referencias
Hodgkin AL. Tbe ionic basis oí nervous conducáon. Science 1964;145: 1148-1154.
Nehcr E, Sakmann B. The patch clamp technique, Sci Am 1992: 28-35
Katz AM. Cardiac ion channels. New Eng J Mcd 1993; 328: 1244-1251
Hodgkin AL, Huxlcy AF. A quantítative description of membrane current and its applícation to conduction and excitation in nerve. J Physiol (Lond) 1952; 117: 500-44.
Hille B. lonic channels of excitable cells, 2a ed. Mass Sunderland, Sinhauer 1992: 426.
Müllcr P, Rudin D. lnduced excitability in reconstituted membrane structure. J Theor Biol 1963; 4: 842-844.
Hamill OP, Marty A, Neher E, Sackmann B, Sigwonh FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane parches. Pflugers Arch 1981; 391: 85-100.
Catterall WD. Molecular analysis of voltage-gated sodium channels in the heart and other tissues. En: Zipes DP y Jalife J. Cardiac electrophysiology, from cell to bedside. 2a ed. Saunders Co. Filadelfia, 199S; 1: 1-10.
Catterall WD. Structure and fünction of voltage-sensitive ion channels. Science 1988; 242: 50-61.
Reutcr H. Diversity and function of presynaptíc calcium channels in the brain. Curr Opin Neurobiol 1996; 6: 331-337.
Amstrong C, Bezanilla F, Rojas E. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 1973; 62: 375-391.
Courabeuf E, Nargeot J. Electrophysiology of human cardiac cells, Cardiol Res 1991; 27: 1713-25.
Noble D. Ionic mechanism in cardiac electrical activity. En: Zipes DP y Jalife J. Cardiac electrophysiology, from cell to bedside. 2a ed. Fila delfia. Saunders Co. 1995; 29: 305-313.
Irisawa H. Brown HF, Giles W. Cardiac pacemaking in the sinoatrial node, Physiol Rev 1993; 73: 197-219.
Di Francesco D, Mangoni ML, Maccaferri G. The pacemaker current in cardiac cells. En: Zipes DP y Jalife J. Cardiac elcctrophysiology, from cell to bedside 11: 96-103.
Campbell LD, Rasmusson LR, Strauss CH. lonic current mechanisms generating vertebrate primary cardiac pacemaker activity at the single cell level: An integrative view. Ann Rev Physiol 1992; 54: 279-302.
McCleskey EW. Calcium channels cellular roles and molecular mechanisms, Current Opin Neurobiol 1994; 4: 304-312.
Bennet PB, Yazawa K, Makita N, Gcorge AL. Molecular mechanism for an inherited cardiac arrhytmia, Nature 1995; 376: 683-685.
Bycrly Lung, Hagiwara S. Calcium and channel modulation, calcium channel diversity. Plenum Press. New York 1988: 3-18.
Tanabe T, Mikami A, Nurna S, Beam KG. Cardiac-type excitation contraction coupling in dysgenic skeletal muscle injected with cardiac dihidropiridine receptor cDNA source, Nature 1990; 344: 451-453.
Pusch M, Jentsch T. Molecular physiology of voltage-gatcd chloride channels. Physiol Rev 1994; 74: 813-827.
Task force of the working group on arrhytmias of the European Society of Cardiology. The Sícilian Gambit. A new approach to the classification of antiarrhytmic drugs based on their actions on arrhythmogenic me chanisms. Circulation 1991; 84: 1831-1851.
Rosen Mr. Strauss Hc, Jansen Mj. The classification of antiarrhytmic drugs. En: Zipes Dp y Jalife J. Cardiac electrophysiology, from cell to bedside 110:1277-1286.
Rose Mr. Consequences of the Sicilian Gambit Heart J 1995; 16 (Suppl G):32-6