Termografía infrarroja como adjunto a la angiografía ICG (Indocyanine Green) para la evaluación de la perfusión encolgajos DIEP (Deep Inferior Epigastric Perforator): un estudio piloto de correlación y concordancia
Contenido principal del artículo
Resumen
Antecedentes: La pérdida de la perfusión tisular y la necrosis grasa en la reconstrucción con DIEP, secundaria a hipoperfusión, sigue siendo una causa de morbilidad. La angiografía con ICG es el estándar actual para la evaluación intraoperatoria, pero puede sobreestimar la isquemia. También, tecnologías de termografía infrarroja permiten estimar riesgo de necrosis y éxito de perfusión. Sin embargo, su uso combinado no se ha estudiado.
Objetivo: evaluar la correlación y concordancia entre hotspot e ICG.
Material y métodos: estudio piloto con 12 pacientes sometidas a reconstrucción mamaria con colgajo DIEP. En el intraoperatorio, la perfusión del colgajo se evaluó con termografía, por medio de cámara térmica; y también ICG con la escala del software SPY-Q.
Resultados: La doble verificación con ICG y hotspot permitió detectar un caso (8.7%) identificando isquemia inmediata en el posoperatorio que requirió realización de una nueva anastomosis. Al seguimiento a 12 meses no presento complicaciones mayores. La correlación entre ambas tecnologías reportó ser significativa para las zonas I y III (p>0.05). Su concordancia para estimar zonas utilizadas para diagnóstico de perfusión fue significativa, pero débil (Kappa=0.25, p=0.019).
Conclusiones: A pesar de una débil correlación estadística, el uso combinado de termografía y angiografía ICG en un modelo de doble verificación demostró ser clínicamente eficaz para minimizar la necrosis grasa. Esta estrategia dual representa una herramienta prometedora para optimizar la toma de decisiones intraoperatorias."
Detalles del artículo
Sección
Cómo citar
Referencias
1. Momeni A, Sheckter C. Intraoperative Laser-Assisted Indocyanine Green Imaging Can Reduce the Rate of Fat Necrosis in Microsurgical Breast Reconstruction. Plastic and Reconstructive Surgery. 2020;145(3): 507e–513e. https://doi.org/10.1097/PRS.0000000000006547.
2. Chang EI, Ibrahim A, Liu J, Robe C, Suami H, Hanasono MM, et al. Optimizing Quality of Life for Patients with Breast Cancer-Related Lymphedema: A Prospective Study Combining DIEP Flap BreastReconstruction and Lymphedema Surgery. Plastic and Reconstructive Surgery. 2020;145(4): 676e–685e. https://doi.org/10.1097/PRS.0000000000006634.
3. Ghilli M, Lisa AVE, Salgarello M, Papa G, Rietjens M, Folli S, et al. Oncoplastic and reconstructive surgery in SENONETWORK Italian breast centers: lights and shadows. Breast (Edinburgh, Scotland). 2024;73: 103601. https://doi.org/10.1016/j.breast.2023.103601.
4. Hembd AS, Yan J, Zhu H, Haddock NT, Teotia SS. Intraoperative Assessment of DIEP Flap Breast Reconstruction Using Indocyanine Green Angiography: Reduction of Fat Necrosis, Resection Volumes, and Postoperative Surveillance. Plastic and Reconstructive Surgery. 2020;146(1): 1e–10e. https://doi.org/10.1097/PRS.0000000000006888.
5. George RE, Elwood ET, Jones GE. Indocyanine Green Angiography Overpredicts Postoperative Necrosis Compared to Multispectral Reflectance Imaging. Plastic and Reconstructive Surgery. 2023;151(3): 412e–419e. https://doi.org/10.1097/PRS.0000000000009917.
6. Duggal CS, Madni T, Losken A. An outcome analysis of intraoperative angiography for postmastectomy breast reconstruction. Aesthetic Surgery Journal. 2014;34(1): 61–65. https://doi.org/10.1177/1090820X13514995.
7. Min K, Oh SM, Kim EK, Eom JS, Han HH. Analysis of Perfusion in the DIEP Flap: Role of the Location of the Perforator, Umbilicus, and Midline Crossing-Over Vessel. Plastic and Reconstructive Surgery. 2023;151(6): 1146–1155. https://doi.org/10.1097/PRS.0000000000010126.
8. Chatterjee A, Krishnan NM, Van Vliet MM, Powell SG, Rosen JM, Ridgway EB. A comparison of free autologous breast reconstruction with and without the use of laser-assisted indocyanine green angiography: a cost-effectiveness analysis. Plastic and Reconstructive Surgery. 2013;131(5): 693e–701e. https://doi.org/10.1097/PRS.0b013e31828659f4.
9. Phillips BT, Lanier ST, Conkling N, Wang ED, Dagum AB, Ganz JC, et al. Intraoperative perfusion techniques can accurately predict mastectomy skin flap necrosis in breast reconstruction: results of a prospective trial. Plastic and Reconstructive Surgery. 2012;129(5): 778e–788e. https://doi.org/10.1097/PRS.0b013e31824a2ae8.
10. Hembd A, Teotia SS, Zhu H, Haddock NT. Optimizing Perforator Selection: A Multivariable Analysis of Predictors for Fat Necrosis and Abdominal Morbidity in DIEP Flap Breast Reconstruction. Plastic and Reconstructive Surgery. 2018;142(3): 583–592. https://doi.org/10.1097/PRS.0000000000004631.
11. Komorowska-Timek E, Gurtner GC. Intraoperative perfusion mapping with laser-assisted indocyanine green imaging can predict and prevent complications in immediate breast reconstruction. Plastic and Reconstructive Surgery. 2010;125(4): 1065–1073. https://doi.org/10.1097/PRS.0b013e3181d17f80.
12. Pestana IA, Coan B, Erdmann D, Marcus J, Levin LS, Zenn MR. Early experience with fluorescent angiography in free-tissue transfer reconstruction. Plastic and Reconstructive Surgery. 2009;123(4): 1239– 1244. https://doi.org/10.1097/PRS.0b013e31819e67c1.
13. Liu DZ, Mathes DW, Zenn MR, Neligan PC. The application of indocyanine green fluorescence angiography in plastic surgery. Journal of Reconstructive Microsurgery. 2011;27(6): 355–364. https://doi.org/10.1055/s-0031-1281515.
14. Newman MI, Samson MC. The application of laser-assisted indocyanine green fluorescent dye angiography in microsurgical breast reconstruction. Journal of Reconstructive Microsurgery. 2009;25(1): 21–26. https://doi.org/10.1055/s-0028-1090617.
15. Blondeel PN, Van Landuyt KHI, Monstrey SJM, Hamdi M, Matton GE, Allen RJ, et al. The ‘Gent’ consensus on perforator flap terminology: preliminary definitions. Plastic and Reconstructive Surgery. 2003;112(5): 1378–1383; quiz 1383, 1516; discussion 1384-1387. https://doi.org/10.1097/01. PRS.0000081071.83805.B6.
16. Holm C, Mayr M, Höfter E, Ninkovic M. Perfusion zones of the DIEP flap revisited: a clinical study. Plastic and Reconstructive Surgery. 2006;117(1): 37–43. https://doi.org/10.1097/01.prs.0000185867.84172.c0.
17. Li K, Zhang Z, Nicoli F, D’Ambrosia C, Xi W, Lazzeri D, et al. Application of Indocyanine Green in Flap Surgery: A Systematic Review. Journal of Reconstructive Microsurgery. 2018;34(2): 77–86. https://doi.org/10.1055/s-0037-1606536.
18. Illg C, Krauss S, Rachunek K, Thiel JT, Daigeler A, Schäfer RC. Thermography Supported Color Duplex Ultrasound Accelerates ALT Perforator Imaging. Journal of Reconstructive Microsurgery. 2023;39(4): 295–300. https://doi.org/10.1055/s-0042-1755614.
19. Singla P, Dixit PK, Kala PC, Katrolia D, Karmakar S, Humnekar A, et al. Free Flap Monitoring Using Infrared Thermography: An Objective Adjunct to Clinical Monitoring. Indian Journal of Plastic Surgery: Official Publication of the Association of Plastic Surgeons of India. 2024;57(3): 179–183. https://doi.org/10.1055/s-0044-1786742.
20. Luze H, Nischwitz SP, Wurzer P, Winter R, Spendel S, Kamolz LP, et al. Assessment of Mastectomy Skin Flaps for Immediate Reconstruction with Implants via Thermal Imaging-A Suitable, Personalized Approach? Journal of Personalized Medicine. 2022;12(5): 740. https://doi.org/10.3390/jpm12050740.
21. Kim HH, Song IS, Cha RJ. Advancing DIEP Flap Monitoring with Optical Imaging Techniques: A Narrative Review. Sensors. 2024;24(14): 4457. https://doi.org/10.3390/s24144457.
22. Lauritzen E, Bredgaard R, Bonde C, Jensen LT, Damsgaard TE. An observational study comparing the SPY-Elite® vs. the SPY-PHI QP system in breast reconstructive surgery. Annals of Breast Surgery. 2023;7(0). https://doi.org/10.21037/abs-21-123.
23. Moyer HR, Losken A. Predicting mastectomy skin flap necrosis with indocyanine green angiography: the gray area defined. Plastic and Reconstructive Surgery. 2012;129(5): 1043–1048. https://doi.org/10.1097/PRS.0b013e31824a2b02.